MAT 151 Assessment of Readiness – Part 1

Solve for *x*

 $1. \qquad x^2 - x = 6$

2.
$$\frac{x-3}{x+4} = 0$$
 20. $\frac{x}{\frac{1}{2}} = 2x$

3.
$$4 = x^{\frac{1}{3}}$$
 21. $\tan 3x = 3\tan x$

4.
$$e^x = 1$$
 22. $3^{-x} = -3^x$

5.
$$x^2 - 2x - 8 < 0$$
 23.

6.
$$3x^3 - 12x^2 > 0$$

Without using a calculator, sketch each of the following:

7. y + 2x = 3

8.
$$y = \sqrt{x}$$

9.
$$y = e^x$$

10. $y = \frac{1}{x}$

Evaluate:

- 11. $\cos\frac{\pi}{2}$
- 12. $3x^{-2}$ as $x \to \infty$

13.
$$f\left(\frac{1}{2}\right)$$
 if $f(x) = 4x^2 + 2x$

14. arctan1

Simplify

15. $\ln e^{4x}$

16. $\sin(\arcsin \alpha)$

17. $e^{\ln \tan \theta}$

- 18. $\frac{x}{2} = \frac{1}{2}x$ 19. $(a+b)^2 = a^2 + b^2$ 20. $\frac{x}{\frac{1}{2}} = 2x$ 21. $\tan 3x = 3\tan x$ 22. $3^{-x} = -3^x$ 23. $\sqrt{a^2 + b^2} = a + b$ 24. $b\ln a = \ln a^b$ 25. $f^{-1}(x) = \frac{1}{f(x)}$
- 26. $(\cos x)^2 = \cos^2 x^2$

27.
$$e^{\frac{1}{2}} = \sqrt{e}$$

28.
$$\frac{x+2(x+1)}{(x+1)^2} = \frac{x+2}{x+1}$$

When appropriate, write each answer without radicals and express any fraction without a denominator. Simplify all answers

$$29. \frac{ax+b}{x}$$

$$30. \qquad \frac{\left(x^2+1\right)^2}{x}$$

$$31. \quad \sqrt{x}\left(x+\frac{1}{x}\right)$$

$$32. \quad \frac{z-1}{\sqrt{z}}$$

$$33. \quad \left(w^2 - \sqrt{w}\right)\left(w^2 + \sqrt{w}\right)$$

$$34. \quad \sqrt{2^{4x} \cdot 5^{4x}}$$

$$35. \quad \frac{\sqrt{t}\left(t^2+t^3\right)}{t}$$

$$36. \quad \frac{x}{x^2+1}$$

True or False

MAT 151

Assessment of Readiness - Part 1: Answers

1.	3 and -2	29.	$a+bx^{-1}$
2.	3	30.	$x^3 + 2x + x^{-1}$
3.	64	2.1	$\frac{3}{2}$ $-\frac{1}{2}$
4.	0	31.	$x^2 + x^{-2}$
5.	-2 < x < 4 or $(-2, 4)$	32.	$z^{\frac{1}{2}} - z^{-\frac{1}{2}}$
6.	<i>x</i> > 4	33.	$w^4 - w$
7 –	- 10 graphs	34.	100 ^{<i>x</i>}
11.	0	35.	$t^{\frac{3}{2}} + t^{\frac{5}{2}}$
12.	0	36	$x = r(r^2 + 1)^{-1}$
13.	2	50.	$\frac{1}{x^2+1}$ or $x(x+1)$
14.	$\frac{\pi}{4}$		
15.	4x		
16.	α		
17.	$\tan heta$		
18.	Т		
19.	F		
20.	Т		

- 21. F
- 22. F
- 23. F
- 24. T
- 25. F
- 26. F
- 27. T
- 28. F

- 1. If $f(x) = x^3 + 5$, find the average rate of change of f(x) with respect to x from x = 1 to x = 3.
- 2. Solve for $x: e^{3x} = 27$
- 3. If $f(x) = \sqrt{x} 3$, find $f^{-1}(x)$.
- 4. If C(t) represents the number of cars, in millions, sold t years after 1980,
 - a. what does C(15) tell us?
 - b. what does $C^{-1}(15)$ tell us?

5. If
$$f(x) = x^2$$
, express $\frac{f(x+h) - f(x)}{h}$ in simplest form.

6. Write an equation of the line which passes through the points (-4, 6) and (3, -8).

7. If $h(x) = \frac{3x}{x^2 - 4}$, find:

- a. the equations of all horizontal asymptotes to the graph of h(x).
- b. the equations of all vertical asymptotes to the graph of h(x).
- 8. Find the exact value of: $\tan \frac{\pi}{4} \sin \frac{3\pi}{2}$
- 9. Find the exact value of: sin(arctan1)
- 10. If $f(x) = 5x^2 3$ and g(x) = 4x
 - a. Find the value of g(f(1))
 - b. Find an expression for f(g(x)).
- 11. When a new product is advertised, more and more people try it. However, the rate at which new people try it slows as time goes on.
 - a. Sketch a graph of the total number of people who have tried such a product against time.
 - b. What do you know about the concavity of the graph?
- 12. What is the *exact* range for the function $f(x) = e^{\cos(x)-1}$

- 13. If $8y = 3e^x$ then x equal to
 - a. $x = \ln 8 + \ln 3 + \ln y$
 - b. $x = \ln 3 \ln 8 + \ln y$
 - c. $x = \ln 8 + \ln y \ln 3$
 - d. $x = \ln 3 \ln 8 \ln y$
 - e. none of these
- 14. What is the domain of $y = \frac{2}{x^2 4x}$?
- 15. Find an equation for line L, shown in the figure below.

- 16. The table to the right contains values for three different functions.
 - a. Which (if any) of these functions are linear functions? For those functions which are linear, find the formula.
 - b. Which (if any) of these functions are exponential functions? For those functions which are exponential, find the formula.

x	f(x)	g(x)	h(x)
-2	12	16	37
-1	17	24	34
0	20	36	31
1	21	54	28
2	18	81	25

- 17. Draw the graph of the function f(x) satisfying the following conditions.
 - As $x \to \infty$, $f(x) \to 0$.
 - As $x \to -\infty$, $f(x) \to +\infty$.
 - The roots of f(x) are -3, 1, and 2.

ANSWERS

1. 13 2. ln 3 $f^{-1} = (x+3)^2$ or $x^2 + 6x + 9$ 3. number of cars sold in 1995 4. a. the year when 15 million cars were sold b. 2x+h5. y = -2x - 2 (a possible answer) 6. 7. y = 0a. x = 2 and x = -2b. 2 8. $\frac{\sqrt{2}}{2}$ 9. 10. 8 a. $80x^2 - 3$ b. 11. Concave down - t $\frac{1}{e^2} \le y \le 1$ 12. 13. c \sim , $x \neq 0, 4$ 14. y = 2x + 415. 16. h(x) = 31 - 3xa. $g(x) = 36(1.5)^x$ b.

17. A possible graph is shown below. There are more possibilities.

